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Several years ago we demonstrated that the formation of O,(‘Ei) could 
be sensitized by a variety of triplet sensitizers including SOZ(~B,) [l - 31, 
The time-resolved flash photolysis technique employed for this study proved 
to be a most convenient method of studying the physical quenching of 
02(1 Zi) by small quenching molecules. As the quenching constants obtained 
by this method were generally of higher precision and accuracy than those 
obtained by other methods we accordingly made a systematic study of a 
number of diatomic and triatomic quenching molecules as well as methane 
and ethane and their derivatives. 

As we could detect dimole emission of 02(‘A,) developing during the 
quenching process we concluded that 02(lA9) was formed directly and that 
the electronic energy difference between O,(‘C;) and 02(‘Ag) was converted 
into vibrational, rotational and translational energy of the quencher molecule. 
Attempts have been made to relate the quenching rate constants to the 
dipole moment, polarizability and ionization potential of the quencher [4] . 

However, on examination of our results and those of others we found [5, 141 
that for a whole series of molecules which quench O,(‘Zh), the quenching 
efficiency Q, here defined as the quenching rate divided by the collision 
number, was related to the vibrational frequency of the quencher molecule 
according to an empirical equation where K and C are constants characteris- 
tic of a given molecular type: 

AE’ 
log q = K +c 

hb trnax) 
(1) 

i.e. diatomic, triatomic, methane derivative, etc., AE’ is the energy difference 
between the O-O vibronic levels of O2(1Ei) and 02(lAg), and u,ib(max) is the 
maximum normal mode vibrational frequency of the quencher. Data illustra- 
ting this are shown in Table 1 and Fig. 1. 

It was quite clear from eqn. (1) that the closer in energy AE’ and v,ib .(max) 
were, the more efficient was the quencher, a conclusion reached also by 

*Paper presented at the 1 lth Informal Photochemistry Conference, Nashville, 
Tennessee, June 16 - 20,1974. 
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TABLE 1 

O,tlZi) quenching efficiency, q, as calculated from the quenching rate constants. 
The formula for the conversion is obtained from collision theory: q = (2~1~_9/~R7’)” x 

(cJ~~+ oQ)‘-*kq. The assumption is made that ~1~ e UO, = 3.46 A. 

Q 4) 

H2 

HDt 

D2 

N2 

co 

02 

H2O 

D2O-t 

H2S 

(332 

5J20 

cs2 

so2 

(3.34 

CF4 

cc14 

C2H6 

C2D6 

%F, 

C2H4 

2.90 6.56 x 10’ 

2.90 1.9 x lo* 

2.90 1.02 x 10’ 

3.70 1.34 x 10” 

3.60 3.4 x 10” 

3.46 2.76 x lo4 

2.82 1.22 x log 

2.82 2.3 x 10’ 

3.73 3.85 X lo* 

4.00 2.5 x lo* 

3.88 8.10 x 10’ 

4.44 1.7 x lo6 

4.29 4.0 x lob 

3.88 5.03 x 10’ 

4.70 1.59 x lo6 

5.88 2.7 x 10’ 

4.42 2.75 x lo* 

4.42 1.03 x lo* 

5.31* 1.90 x lo6 

4.23 2.34 x 10’ 

k,(M-ls-l) q 1% Q bib @=I 

1.88 x 1o-3 -2.736 4395 

6.44 x lo4 -3.191 3817 

4.00 x 1o-5 -4.398 3118 

8.49 x 10c6 -5.071 2359 

2.22 x 1o-5 -4.664 2170 

1.94 x 1o-7 -6.710 1580 

8.86 x 1o-3 -2.053 3756 

1.71 x lo-* -1.767 2784 

2.55 x 1O-3 -2.594 2627 

1.62 x 1O-3 -2.790 2349 

5.44 x lo4 -3.264 2224 

1.09 x lo-5 -4.963 1532 

2.56 x lO+j -5.592 1361 

2.57 x lo4 -3.590 3020 

9.73 x 10-6 -5.012 1265 

1.34 x 1o-e -5.873 776 

1.47 x 1o-3 -2.833 2996 

5.39 x lo4 -3.268 2236 

1.06 x 1O-5 -4.975 1250** 

1.29 x 10-3 -2.891 3103 

*Calculated from atomic sizes. f Ref. 13. 
**Obtained from the ix. spectrum. 

Davidson and Ogryzlo [6] . Thus the conversion of electronic energy into 
vibration appeared logically to be the most probable process. But naturally 
the question arose as to how the energy difference between AE’ and v,ib (max) 
was partitioned between rotational and translational modes and the 
factors governing the partitioning. Since an answer to this question was not 
forthcoming without resort to much more elaborate and sophisticated 
experiments, we have attempted to gain some insight into the problem 
through a theoretical treatment along the lines previously pursued by 
Dickens et al. [ 71 in their treatment of the physical quenching of electroni- 
cally excited atoms. 

To simplify the problem we decided to treat only diatomic quenching 
molecules, Q2. In this initial treatment we have neglected the effect of 
rotation and have considered that the vibronic energy of the excited di- 
atomic oxygen molecule is partitioned between ground state vibrational 
levels of the quencher and the relative translation of the collision partners. 
Further, in these inefficient physical quenching processes, the potential 
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energy surfaces of the initial and final states are assumed to be well 
separated with no regions of crossing or strong interaction. This permits the 
use of the “distorted wave” approximation [8] in treating the collision 
process. 

Equation (2) describes the collision process: 

O&X;, u’ = 0) + Q2(u = 0) + 02(‘Ag, u” = 0, 1, 2 . ..) + 

Qdu = 0, 1, 2 .._) + AE (2) 

where AE is the change in the relative kinetic energy of translation of the 
colliding molecules. 

The wave equation for the collision process (2) is given by: 

h2 
211 +E-Wr,r~,~I, J-2,92) 

7 
Q = 0 (3) 

HI and H2 are the normal free space hamiltonians of the oxygen and quencher 
molecules, respectively, V is the interaction potential, ‘54 /-IV: is the kinetic 
energy of the colliding molecules, p is their reduced mass, and r is the center 
of mass separation coordinate. E is the sum of the normal internal energies of 
the free space molecules. The coordinates rl and r2 are the electronic coordi- 
nates of 0s and Qs, respectively, while q1 and q2 are their vibrational 
coordinates. 

A solution to eqn. (3) is sought of the form: 

(4) 
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where dhh, q 1, r2, Q~) is the wave function for the electronic and vibrational 
motions of 0, and Q2_ These in turn are approximated in Born-Oppenheimer 
fashion by: 

3/&-r, qC r2, q-2) = ~enl(rl)#~~(ql)xe,l(r2)x~b(q2) (5) 

R,(r) is the translational wave function which is treated in terms of scattering 
theory [8]. The asymptotic form of these wave functions is given by: 

R,(r + -) --t exp (ik,r cos 0) + fo(8,~) 1 exp (ik,r) (‘3 
r 

and 

R,(r + =+) -+ C-0, @) kexp (i&r) (7) 

The “elastic” scattering process (6) is represented by two terms: the 
first, an incoming plane wave and the second, an elastically scattered spheri- 
cal wave. The “inelastically” scattered translational wave function, R,,(r) is 
a spherical wave whose amplitude, f,(e, @) is a function of the normal 
spherical coordinate angles, 8 and @ and the wave number term, k, of the 
exponential is given as k n = pVn /ii 

If eqn. (4) is substituted into (3) the set of equations (8) is obtained: 

(u: + k%)Ri(r) = 
a-4 
--- zRn Vi, (r) (8) 

where 

Vi, = J m s I VP, rl, ql, r2, a)WLdrldwbda (9) 

Now the exact interaction potential has a complicated dependence upon the 
various variables but a reasonable approximation similar to that used by 
Dickens et al. [ 71 can be made by separating the variables as in: 

VW, rl, 91, r2,q2) = V(r)V(r,)V(q,)V(rz)V(Q2) (10) 

This permits (9) to be written as: 

Vi, = Ui,- V(r) (11) 

where u, = j . . IV(r,)V(q,)V(r2)V(q,)~i~,dr,dq,dr2dq, (12) 

It is convenient to express the interaction potential of eqn. (10) in 
terms of exponentials in which a characteristic length, a-l, that defines the 
region where V varies markedly with r, appears as a coefficient in the 
exponent [9] . This is assumed to be large compared to the vibrational 
amplitudes, A 1q1 and A,q, of the colliding molecules (Fig. 2). Generally e-l 
can be estimated from a Lennard-Jones potential fit of gas viscosity data 
[9, lo], assuming equilibrium (or average) values for the internal coordinates. 

For the quenching process described in eqn. (2) a tractable form of the 
interaction potential (10) can be derived from considerations similar to those 
used by Dickens et al. [7] . For simplicity we considered the collision to be 
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Fig. 2. 

collinear as in Fig. 2. In the repulsive portion Voo of eqn. (9) should have the 
form [7, lo] : 

V 00 = V,exp (-cw) (13) 

To obtain a tractable form for the interaction potential consistent with eqn. 
(10) the following was used: 

V = VA(l + firI + yrf)(l + @‘rz + r’rl) exp (-d) (14) 

where from Fig. 2, d is the distance between the closest 0 and Q atoms. 

V,,, and V,,, of eqn. (10) appear in eqn. (14) as truncated series expansions 
of exponentlals. Their form assumes spherically symmetric shells of electron 
density about 0s and Q2 whose radii are rl and r2 respectively. 

Since from Fig. 2: 

d =r-dd, -d2 -Alql -Azqz 

one can rewrite eqn. (IO) as: 

V(r, rl. ql, r2, q2) = 

V O(l+pr, +yr: )<l+$r, +y*:) exp(aAlq,)exp((XA2Q2)exp(Ixr) 

(15) 

Cl61 

Under the gas kinetic conditions employed in our experiments one 
would expect: 

V On =vouon exp (--ar) < VOO, Vnn (17) 

where Voo 2 V,, s V, exp (-ar) 

Therefore the use of distorted wave approximation [7, 81 appeared to be 
justifiable in the calculation of the quenching efficiency for the system of 
eqn. (2). For this purpose we first calculated the differential inelastic cross- 
section for the collision [ $1 which is: 

u,(~,v,,) sin 8 dOd$ = 5 If,(e,@) I2 sin eded@ 
ho 

(18) 

Integration over the unit sphere yields the total, velocity dependent, inelastic 
cross-section, a,(vo). Further integration over a Maxwellian velocity 
distribution of the incident relative velocity of collision, Vo, yields the 
deactivation cross-section, u,, for the nth transition. This is given by: 

0n =%(;)2 ,i cn 0~0)d exp (-wiWbV duo (19) 

where kb is the Boltzmann constant. An analytical expression approximating 
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the value for un has been obtained by Witteman [ll] for the case of vibra- 
tional energy transfer which is given in: 

un 
= 

128 
- 

9 
7r”y3p a- 6h-4p2(AE)2exp(-3b2) 

- 
2pk,T h2a2 

4a2ii2 
+ b2 

2tikbT 

where 

nyAE 

1 
113 

b= 
olh(2pk,T)” 

and AE is the translational energy assumed to 
process. This is given by: 

AE = 1 AE,, - AE,,,I = 
h2(k; -k,2) 

2P 

(21) 

appear or disappear in the 

(22) 

For net activation eqn. (20) is multiplied by a factor exp (-AE/k,T). 
The matrix elements, Ue, in eqn. (20) are given by: 

u On = (u”l’)o,. (qb)On’ (“iS’)On CGib)On (23) 

As there is no electronic transition in the quencher molecule, (Us’),, can be 
taken as unity. The electronic matrix element (U&, for the 1X:; + ‘Ag 
process in O2 is rather difficult to evaluate as the transition is formally 
forbidden_ Of course, in the collision there will be a strong perturbation 
which may give it a value approaching unity and for the present purposes 
this is what we will assume it to be. 

The two vibrational matrix elements, ( wl,)on and (Vi”),, were 
calculated by numerical integration of Morse oscillator wave functions [12] 
(24) and (25). In the case of eqn. (25) an exponential perturbation potential 
was included. 

(Gb)o, = J &o*ti/Ind4r (24) 

(Gbhn = 
s 

hO*bn ew (~&a)dcz2 (25) 

The quenching efficiency was calculated using eqn. (26) by summing 
over all the inelastic cross-section terms, u,, for the various vibronic transi- 
tions in O2 and vibrational transitions in Q2 quenching molecules. 

Q = +/%a1 (26) 

In Table 2 the calculated and experimental values of the quenching 
constants are compared. The former are less than the latter by roughly an 
order of magnitude except for the ground state O2 and here the quenching 
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TA3LE 2 

The qtheory us. qexp comparison for diatomic quenchers 

Q ~_ 
*2 

HD 

D2 

N2 

co 

02 

*uo, Ah! (cm- -1 * 
1 

-844 

87 

-612 

138 

-- 51 

- -712 

-641 

- -570 

a;, (A2)** Qthe0l-Y Qexp 
_---.- 

5.82 X 1O-2 1.23 x lo4 1.88 x 1o-3 

2.17 x 10-l 1.03 x lo-” 6.44 x 1O--4 

1.02 x 10-l 3.59 x lo+ 4.00 x 1o-5 

1.51 6.35 x lo-” 8.49 x lo* 

3.98 2.04 x lo-’ 2.22 x 1o-5 

1.16 x 1O-.3 

2.99 x lo-3 2.38 x lo+’ 1.94 x lo--’ 

7.80 x 1O-3 
._ 

“AE is negative when AE, > AE,, in eqn. (22). 
**CT; = 0,/U& (eqn. 20). 

process is no doubt complicated by collisions in which complete exchange 
of electronic excitation energy occurs, i.e. no net quenching. Thus the trend 
and relative ratios of quenching efficiencies are correctly predicted by the 
theory. Furthermore the empirical formula for 4 in eqn. (l), derived from 

experimental data, is essentially compatible with the theory. 
The calculated efficiencies have assumed a value of unity for the elec- 

tronic matrix element for the Oa(‘C; --f ‘Ag) transition which, of course, may1 
be too high. If one calculates q for inert gas quenching and compares it with 
experimental data the value for this matrix element, assuming the vibronic 
transition 02(1Zi, u = 0 -+ lAg, u 2 3) as the predominant transition coupling 
with translation, lies between 0.1 and 0.5. But this neglects any possible 
change in rotational level of the O2 in the transition. Furthermore rotational 
transitions in the quenching molecule, Q2, have also been neglected. These 
factors undoubtedly play a significant role in the quenching process and our 
current efforts are directed toward evaluating them. 

Details of the calculations and experimental techniques will appear 
elsewhere. 

This study was supported by the National Science Foundation Grant 
No. GP-33269X. 
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